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Abstract

In this paper, we first study the chaotic synchronization phenomenon of the suspended track with moving
load system and then the transient response of chaos synchronization. The Lyapunov exponent is utilized to
prove the chaos synchronization, but under certain conditions it is more complicated. Next, we study the
synchronization of autonomous and non-autonomous systems. We find that slave systems cannot
be synchronized with master system for certain time excitations no matter how large A is. Next, the phase
synchronization between them will be studied. An application of chaos synchronization and secure
communication is presented.
Finally, in order to increase the chaos phenomena, we use anticontrol. Constant torque, periodic torque,

periodic impulse signal, time delay function, and adaptive control are used successfully to control the state
from order to chaos.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Synchronization is a basic phenomenon in physics, engineering and many other scientific
disciplines. In the classical sense, synchronization means frequency and phase locking of periodic
oscillators. However, even chaotic systems may be linked in such a way that their chaotic
oscillations are synchronized, so that the difference of the state vectors of both chaotic systems
converges to zero. Recently, chaos synchronization has been studied extensively. Identical chaotic
systems can be successfully synchronized by linearly and non-linearly coupled terms discussed in
this paper.

ARTICLE IN PRESS

*Corresponding author. Tel.: +886-3-5712121; fax: +886-3-5720634.

E-mail address: zmg@cc.nctu.edu.tw (Z.-M. Ge).

0022-460X/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00187-1



The suspended track with moving load system [1], which is excited by a harmonic torque
(M sinot) and a periodic force (F sinot), is explored. The chaos synchronization phenomena of
master and slaver systems are studied [2–6]. These phenomena and the transient response of chaos
synchronization are described. The Lyapunov exponent is utilized to prove the chaos
synchronization , but under certain conditions it is more complicated.
When a usual Runge–Kutta numerical scheme is used, the full state variables may be integrated.

The Euclidean distance d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ

2 þ ðy1 � y2Þ
2 þ ðz1 � z2Þ

2
q

between the two trajectories is

monitored for various choices of coupling parameter A: The distance between the trajectories of
the subsystems, i.e., the stability of the chaotic attractor in the invariant subset is monotonic if the
distance decreases to zero monotonically in time. Euclidean distance d between the drive and the
response trajectories will converge to zero if systems synchronize.
The synchronization of the autonomous and the non-autonomous systems is studied. It is

found that slave systems cannot be synchronized with master systems, no matter how large A is.
Next, the phase synchronization between them can be realized [7,8].
An application of synchronization and secure communication is presented [9,10]. This paper

presents a way to transmit and retrieve a signal via chaotic systems. In contrast to existing
schemes with one transmission line, a two-channel transmission method is adopted for the
purpose of faster synchronization and higher security. Basically, an output of the chaotic
transmitter is sent for synchronization, only with no connection to the information signal. The
other channel transmits a signal generated from a highly non-linear function of the chaotic states,
while the first complicated encryption and improves privacy. Simulation results validate the new
chaotic-based secure communication method.
Finally, in order to increase the chaos phenomena, anticontrol is used [11]. Constant torque,

periodic torque, periodic impulse signal, time delay function [12,13,14], and adaptive control are
used successfully to control the state from order to chaos.

2. Synchronization phenomena of coupled chaotic systems

2.1. Description of the system model and differential equations of motion

The suspended track system is depicted in Fig. 1. The beam which can rotate freely about a
vertical axis is suspended by a string. There are two heavy loads linked with beam by a spring
moving on the track of the beam with viscous damping. Neglecting the dry friction referring to
Fig. 1, one can write the expression for kinetic energy T and potential energy V as

T ¼ 1
2

J ’jþ mð’r þ r2 ’j2Þ;

V ¼ Kðr � r0Þ
2;

where J is the moment of inertia of the beam about the vertical axis, m the mass of each load, K
the spring coefficient, r the distant between vertical axis and the center of the load, r0 the original
length of the spring, j the rotating angle of the beam.
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Thus, the Lagrangian is given by

L ¼ T þ V ¼ 1
2

Jj2 þ mð’r2 þ r2 ’j2Þ � Kðr � r0Þ
2:

Since the system includes a non-conservative damping force, their energy is lost. Rayleigh’s
dissipation function of the system is

R ¼ B’r2;

where B is the damping coefficient and Lagrange’s equations are:

d

dt

@L

@ ’j

� �
�

@L

@j
¼ 0;

d

dt

@L

@’r

� �
�

@L

@r
¼ Qr ¼ �

@R

@’r
:

The dynamics equations of the system are:

.jþ
4mr’r ’j

J þ 2mr2
¼ 0;

m.r � mr ’j2 þ Kðr � r0Þ ¼ �B’r:

It is assumed that the beam is subjected to a harmonic torque M sinot along the direction
of j; and each load is subjected to a periodic force F sinot along the direction of r: Then the
equations become

.jþ
4mr’r ’j

J þ 2mr2
¼ �M sinot;

m.r � mr ’j2 þ Kðr � r0Þ ¼ �B’r � F sinot;

where o is the frequency of the external torque and external force. To show our system in
dimensionless form is a better way for research. Use the dimensionless time t ¼ Ot; where O is a
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Fig. 1. A schematic diagram of the suspended track with moving load system.
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normalized frequency. Substituting t ¼ Ot; the following dimensionless equations are obtained:

j00 �
rr0j0

Jr þ 1
2
r2

¼ �Mj sinott;

r00 � rj02 þ Kmðr� 1Þ ¼ �Bmr0 � Fr sinott;

where

j0 ¼
dj
dt

; j00 ¼
d2j
dt2

; r0 ¼
dr
dt

; r00 ¼
d2r
dr2

; ot ¼
o
O
;

r ¼
r

r0
; Jr ¼

J

4mr20
; Km ¼

K

mO2
; Bm ¼

B

mO
; Mj ¼

M

4mr20O
2
; Fr ¼

F

mr0O2
:

The phase portrait is the evolution of a set of trajectories emanating from various
initial conditions in the state space. During the investigations of the dynamical system
we are particularly interested in the periodic and chaotic behaviors of the phase trajectories.
Using the dimensionless equation and letting a ¼ j; x ¼ j0; y ¼ r; z ¼ r0; the system equations
become

’x ¼ �
xyz

Jr þ 1
2
y2

� Mj sinott;

’y ¼ z;

’z ¼ x2y � Kmðy � 1Þ � Bmz � Fr sinott:

ð1Þ

It is noted that a ¼ j is cyclic. Since a does not appear on the right side of the last three equations
of the system, it produces no effect on the dynamics of the last three equations.
Typical graphs of the three computed Lyapunov exponents for the non-linear dynamical system

(Eq. (1)) are plotted in Fig. 2 as Mj ranges from 4 to 6 and Fr ¼ 1: The system has the chaos
phenomena when we choose Mj ¼ 5 and Fr ¼ 1:

2.2. Synchronization of mutual coupled chaotic systems

2.2.1. Synchronization by linear coupling term
In this subsection, we consider two identical mutually coupled systems [15,16]. These are more

complex than uni-directional systems. The master and slave system can be expressed as follows:
Master system:

’x1 ¼ �
x1y1z1

Jr þ 1
2
y21

� Mj sinott� Aðx1 � x2Þ;

’y1 ¼ z1;

’z1 ¼ x2
1y1 � Kmðy1 � 1Þ � Bmz1 � Fr sinott:

ð2Þ
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Slave system:

’x2 ¼ �
x2y2z2

Jr þ 1
2y

2
2

� Mj sinottþ Aðx1 � x2Þ;

’y2 ¼ z2;

’z2 ¼ x2
2y2 � Kmðy2 � 1Þ � Bmz2 � Fr sinott;

ð3Þ

where A is the coupling strength and Aðx1 � x2Þ is the coupling term. These two systems have
different initial conditions: ðx10; y10; z10Þ ¼ ð0:1; 0:2; 0:3Þ and ðx20; y20; z20Þ ¼ ð�0:1;�0:2;�0:3Þ:
When Ao0:0824; the systems are not synchronized and the results are shown in Fig. 3. The phase
portrait y versus z gives the relation between the displacement r and velocity ’r; the phase portrait x
versus z gives the relation between angular velocity ’j and linear velocity ’r; the phase portrait x
versus y gives the relation between angular velocity ’j and linear displacement r for completeness,
since these three state variables are in equality mathematically. When AX0:0825; the systems are
synchronized and the results are shown in Fig. 4. These results can also be proved from the
Lyapunov exponent diagram in Fig. 5, from which the critical value of A for synchronization can
be found. At synchronization, one of the Lyapunov exponent transverses the zero value from
positive to negative. This indicates that the transversality means synchronization and the
transverse value is the critical value A ¼ 0:0825: Although the critical value from phase portraits
and that from the Lyapunov exponent diagram are not identical, they are very close and the
difference is because of only the computational error.

2.2.2. Synchronization by non-linear coupled term

In this subsection, two systems beginning with two different initial conditions will be
synchronized by non-linear coupled term. The coupling term is A sinðx1 � x2Þ: Using Lyapunov
exponent as a criterion for analyzing whether synchronization occurs or not is more complex.
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Fig. 2. Three Lyapunov exponents for Mj between 4 and 6, Fr ¼ 1:
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Fig. 4. Phase portrait and time–response error of mutual coupled systems with coupling terms Aðx2 � x1Þ and Aðx1 � x2Þ
for A ¼ 0:0825:
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These two systems have different initial conditions: ðx10; y10; z10Þ ¼ ð0:1; 0:2; 0:3Þ and
ðx20; y20; z20Þ ¼ ð�0:1;�0:2;�0:3Þ: When Ap0:02 and near 0:06 and 0:083; the systems are not
synchronized and the result is shown in Fig. 6. When AX0:084; the systems are synchronized and
the result is shown in Fig. 7. These results can also be proved from the Lyapunov exponent
diagram in Fig. 8 from which the critical value of A for synchronization can be found, but this is
not accurate. At synchronization, one of the Lyapunov exponent transverses the zero value from
positive to negative. This indicates that the transversality means synchronization and the
transverse value is the critical value A ¼ 0:083: Although two critical values from phase portraits
and that from Lyapunov exponent diagram are not identical, they are very close because of
computational error.

2.3. Synchronization via adaptive feedback

In this section, we study the adaptive control of the system. The adaptive control directs a
chaotic trajectory to stable trajectory.
The master and slave system can be described as follows:
Master system:

’x1 ¼ �
x1y1z1

Jr þ 1
2

y21
� Mj sinott;

’y1 ¼ z1;

’z1 ¼ x2
1y1 � Kmðy1 � 1Þ � Bmz1 � Fr sinott:

ð4Þ
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Fig. 5. The Lyapunov exponent of mutual coupled systems with coupling terms Aðx2 � x1Þ and Aðx1 � x2Þ for A
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Fig. 6. Phase portrait and time–response error of mutual coupled systems with coupling terms A sinðx2 � x1Þ and
A sinðx1 � x2Þ for A ¼ 0:06:
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Fig. 7. Phase portrait and time–response error of mutual coupled systems with coupling term A sinðx2 � x1Þ and
A sinðx1 � x2Þ for A ¼ 0:088:
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Slave system:

’x2 ¼ �
x2y2z2

Jr þ 1
2

y22
� Mj sinott� Ax sinðx1 � x2Þ;

’y2 ¼ z2;

’z2 ¼ x2
2y2 � Kmðy2 � 1Þ � Bmz2 � Fr sinott;

ð5Þ

and increase in the linear feedback is given by

’Bm ¼ Ayðy1 � y2Þsgnðx2Þ; ð6Þ

where the system parameter ’Bm is an adjustable function, Ay is a constant adaptive control gain,
and Ax is a coupling strength. In Fig. 9(a), Ax ¼ 0:01 and Ay ¼ 0:011 are shown. In Fig. 9(b),
Ax ¼ 0:02 and Ay ¼ 0:0008 are shown.

2.4. Transient time for uni-directional chaotic synchronization

2.4.1. Transient time of uni-directional linear coupled system
In this subsection we consider uni-directional coupled chaotic systems by linear coupling

term [17].
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Master system:

’x1 ¼ �
x1y1z1

Jr þ 1
2

y21
� Mj sinott;

’y1 ¼ z1;

’z1 ¼ x2
1y1 � Kmðy1 � 1Þ � Bmz1 � Fr sinott:

ð7Þ

Slave system:

’x2 ¼ �
x2y2z2

Jr þ 1
2

y22
� Mj sinott� Aðx1 � x2Þ;

’y2 ¼ z2;

’z2 ¼ x2
2y2 � Kmðy2 � 1Þ � Bmz2 � Fr sinott:

ð8Þ

The Euclidean distance d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ

2 þ ðy1 � y2Þ
2 þ ðz1 � z2Þ

2
q

between the two trajectories
is monitored for various choices of the coupling strength A; as shown in Fig. 10(a). By increasing
the value of the coupling strength, the distance d approaches zero when AthrD0:145; and the two
subsystems display the same output. For values of A greater than Athr; the synchronized state is
stable. This scenario is specifically for the given initial conditions and different initial conditions
would qualitatively produce the same response shown in Fig. 10(b).
In Fig. 11, we show curves representing the evolution of dðtÞ; again on linear-log scale, with

A ¼ 0:19 fixed, for other initial conditions. More precisely, y1ð0Þ ¼ 0:2; z1ð0Þ ¼ 0:3; x2ð0Þ ¼
�0:1; y2ð0Þ ¼ �0:2; z2ð0Þ ¼ �0:3 are kept fixed, and we use different values of x1ð0Þ; as shown in
Fig. 11. The slope of the linearly decaying part or the decaying transient for each of the three
curves is almost the same, corresponding to the intuitive conjecture that the convergence is
governed by the strength of the dissipation transverse to the attractor.

2.4.2. Transient time of uni-directional non-linear coupled system
In this section, we consider uni-directional coupled chaotic systems by non-linear

coupling term. The coupling term is �A sinðx1 � x2Þ: The Euclidean distance d ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ

2 þ ðy1 � y2Þ
2 þ ðz1 � z2Þ

2
q

between the two trajectories is monitored for various

choices of the coupling strength A; as shown in Fig. 12(a). By increasing the value of the coupling
strength, the distance d approaches zero when AthrD0:15; and the two subsystems display the
same output. For values of A greater than Athr the synchronized state is stable. This scenario is
specifically for the given initial conditions, and different initial conditions would qualitatively
produce the same response shown in Fig. 12(b).
In Fig. 13, we show curves representing the evolution of dðtÞ; again on linear-log scale, with

A ¼ 0:19 fixed, for other initial conditions. More precisely, y1ð0Þ ¼ 0:2; z1ð0Þ ¼ 0:3; x2ð0Þ ¼
�0:1; y2ð0Þ ¼ �0:2; z2ð0Þ ¼ �0:3 are kept fixed and we use different values of x1ð0Þ; as given in
Fig. 13. The slopes of the linearly decaying part or the decaying transient for each of the three
curves are almost the same, corresponding to the intuitive conjecture that the convergence is
governed by the strength of dissipation transverse to the attractor.
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2.5. Synchronization of coupled chaotic different systems

Consider that the slave system is a R .ossler system and the master system is still the suspended
track system. Their chaos synchronization will be studied.
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Fig. 10. Plot of several values of the Euclidean distance dðtÞ for different values of coupling strength A: The transition
to a stable synchronized state is located approximately at Athr ¼ 0:145: (a) I.C.: ðx1ð0Þ; y1ð0Þ; z1ð0ÞÞ ¼ ð0; 0:2; 0:3Þ and
ðx21ð0Þ; y2ð0Þ; z2ð0ÞÞ ¼ ð�0:1;�0:2;�0:3Þ: (b) I.C.: ðx1ð0Þ; y1ð0Þ; z1ð0ÞÞ ¼ ð0:2; 0:2; 0:3Þ and ðx21ð0Þ; y2ð0Þ; z2ð0ÞÞ ¼
ð�0:1;�0:2;�0:3Þ:
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Master system:

’x1 ¼ �
x1y1z1

Jr þ 1
2

y21
� Mj sinott� Aðx1 � x2Þ;

’y1 ¼ z1;

’z1 ¼ x2
1y1 � Kmðy1 � 1Þ � Bmz1 � Fr sinott:

ð9Þ

Slave system (R .ossler system):

’x2 ¼ �0:65y2 � z2 þ Aðx1 � x2Þ;

’y2 ¼ 0:65x2 þ 0:15y2;

’z2 ¼ 0:2þ z2ðx2 � 10:0Þ:

ð10Þ

We can find it very hard to carry out synchronization for Mj ¼ 5; Fr ¼ 1 even if we increase the
coupling strength A (Figs. 14(a) and (b)). When the coupling strength A is increased, the error
values ðx1 � x2; y1 � y2; z1 � z2Þ of the system continues to exist. We consider the two systems
(Eqs. (9) and (10)) with the master system forced by a periodic signal. The slave system is coupled
to the master system, but remains autonomous. We find that slave systems cannot be
synchronized with master systems no matter how large A is. Next, the phase synchronization
between them will be studied.
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We define the average frequency Oi by

Oi ¼
dyiðtÞ
dt

� �
¼ lim

T-N

1

T

Z T

0

’yiðtÞ dt: ð11Þ

ARTICLE IN PRESS

Fig. 12. Plot of several values of the Euclidean distance dðtÞ for different values of coupling strength A: The transition
to a stable synchronized state is located approximately at Athr ¼ 0:15: (a) I.C.: ðx1 0ð Þ; y1ð0Þ; z1ð0ÞÞ ¼ ð0; 0:2; 0:3Þ and
ðx21ð0Þ; y2ð0Þ; z2ð0ÞÞ ¼ ð�0:1;�0:2;�0:3Þ: (b) I.C.: ðx1ð0Þ; y1ð0Þ; z1ð0ÞÞ ¼ ð0:2; 0:2; 0:3Þ and ðx21ð0Þ; y2ð0Þ; z2ð0ÞÞ ¼
ð�0:1;�0:2;�0:3Þ:

Z.-M. Ge, H.-W. Wu / Journal of Sound and Vibration 270 (2004) 685–712698



The phase is defined by

riðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiðtÞ

2 þ yiðtÞ
2

q
; yiðtÞ ¼ tan�1

yiðtÞ
xiðtÞ

� �
; i ¼ 1; 2: ð12Þ

In Fig. 15, we take A ¼ 0:2; change the frequency ot from 0.9 to 1.4, and plot the O1=ot and
O2=ot versus ot: In Fig. 15, it appears clearly that the slave system is locked to the forcing
frequency ot at ot ¼ 1:13: In Fig. 16 Oi=ot is plotted versus A; and the same frequency locking
O2=ot ¼ 1 occurs for A ¼ 0:2 while the two systems still stay at the chaotic state.
In Fig. 16, it must be emphasized that when A ¼ 0:2;ot ¼ 1:13; the average frequency O2 of the

slave system (Rossler system) without excited periodic term equals the forcing periodic signal ot:
However, for the master system, the defined average frequency O1 is never equal to ot:
In Fig. 16, at A ¼ 0:04 the average frequencies of the master and slave system are equal. We call

this phenomena phase synchronization.

2.6. Application of synchronization

The topic of synchronization of chaotic oscillators has attracted increased attention in recent
years because of possible relevance to secure communication and biological systems. In this
section, our point is the application of synchronization. In Fig. 17, an explicit analytic condition
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of communication of encryption and decryption is shown. The communication is composed of
three steps:

1. Encrypt the signal.
2. Synchronize the master and slave system.
3. Decrypt the signal.
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We consider the master and slave system of Eqs. (7) and (8). When A ¼ 1; synchronization
occurs.
In step 1, use the function f to encrypt the information signal sðtÞ and the chaotic signal x1ðtÞ:

We take the encryption function fðx1; sÞ ¼ se ¼ f1ðx1Þ þ f2ðx1Þs; where f1 and f2 are the
continuous functions and f2 is non-zero everywhere. In step 2, the master and slave system are
in synchronization via coupling term Aðx2 � x1Þ: A chaotic signal x1ðtÞ is transmitted from master
to slave via the coupling term. In step 3, we used the synchronization signal x2ðtÞ and the
decryption function c to re-produce an approximate estimate sdðtÞ of the masked confidential
signal. We take the decryption function cðx2;fðx1; sÞÞ ¼ cðx2; seÞ ¼ �f1ðx2Þ=f2ðx2Þ þ se=f2ðx2Þ ¼ s:
A schematic description of the entire process is depicted in Fig. 17.
For example, we take s ¼ 0:05sinð60ptÞ; f1ðxiÞ ¼ x2

i ; f2ðxiÞ ¼ ð1þ x2
i Þ; so fðx1; sÞ ¼ se ¼ x2

1 þ
ð1þ x2

1Þs; cðx2;fðx1; sÞÞ ¼ �x3
2=ð1þ x2

2Þ þ se=ð1þ x2
2Þ: Fig. 18(a) shows the result of the

encrypted and decrypted signal. We can prove that the exchange of f1 and f2 give the same
result. Next, if we take s ¼ 0:05sinð60ptÞ; f1ðxiÞ ¼ sin xi expðxiÞð1� x2

i Þ and f2ðxiÞ ¼
2cos xi sin xið1� xiÞ: The result is shown in Fig. 18(b). If we take A ¼ 0:04 synchronization
disappears, s � sd becomes large as shown in Fig. 18(c). In this case, secure communication
fails.
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3. Chaos anticontrol

To improve the chaotic phenomena of the dynamic system, we must anticontrol a periodic
motion to a chaotic system. For this purpose, the addition of constant torque, periodic torque,
periodic impulse input, delay feedback control and adaptive control are used to control periodic
to chaotic phenomena.

3.1. Chaos anticontrol by the addition of constant torque

One can add an external input torque f1 in the system. Eq. (1) can be rewritten as

’x ¼ �
xyz

Jr þ 1
2

y2
� Mj sinottþ f1: ð13Þ

ot (from 1.0 to 2.0) and f1 (from 0 to 5) are changed to improve the chaotic phenomena of the
dynamic system. The result is shown in Fig. 19(a). It is clear that when ot and f1 change, the chaos
region T also changes. It is a very simple way to improve the chaos region of the dynamic system.
We cannot predict the chaos region T ; because in Fig. 19(a) there exists no explicit clue. Fig. 19(b)
shows Lyapunov exponent diagram, when f1 ¼ 0;ot ¼ 1:8:
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3.2. Chaos anticontrol by the addition of periodic torque

One can add an external input periodic torque f2 sinðottÞ in the system. Eq. (1) can be rewritten as

’x ¼ �
xyz

Jr þ 1
2

y2
� Mj sinottþ f2 sino2t: ð14Þ
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When ot and f2 change, the chaos region also changes. For a pair of ot; f2; the chaos region is
increased as shown in Figs. 20(a) and (b), o2 ¼ ot: Fig. 20(a) shows the bifurcation and Fig. 20(b)
shows the Lyapunov exponent.
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3.3. Chaos anticontrol by the addition of periodic impulse input

One can add an external input periodic impulse in the system. Eq. (1) can be rewritten as

’x ¼ �
xyz

Jr þ 1
2

y2
� Mj sinottþ u: ð15Þ

The periodic impulse input

u ¼ f3
XN
i¼0

dðt� iTI Þ; ð16Þ

where f3 is a constant impulse intensity, TI is the period between two consecutive impulses, and d
is the standard delta function.
With different values of f3 and TI the chaos region also changes; the chaos region is increased,

as shown in Fig. 21.

3.4. Chaos anticontrol by the addition of delay feedback term

One can add a delay feedback term in the system. Eq. (1) can be rewritten as

’x ¼ �
xyz

Jr þ 1
2

y2
� Mj sinott: ð17Þ
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Fig. 21. Bifurcation diagram of x for Fr between 1 and 6, ot ¼ 2; f3 ¼ 2; TI ¼ 1:5:
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The delay feedback function u is as the following:

u ¼ f4u
nðyðt� td ÞÞ; ð18Þ

where un is a linear (or non-linear) function, and td is the delay time.
With different unð¼ sinðyðt� 5ÞÞÞ the chaos region also changes and the chaos region is

increased as shown in Fig. 22.

3.5. Chaos anticontrol by adaptive control

Adaptive control [11] is one of the main approaches in control engineering that deals with
uncertain systems. An adaptive system is capable of adapting to a changing environment as well
as varying internal parameters. We successfully choose that when parameter Fr is perturbed as
’Fr ¼ e½�ðx � xsÞ � ðy � ysÞ � ðz � zsÞ�; the following system can be controlled from order to
chaos:

’x ¼ �
xyz

Jr þ 1
2

y2
� Mj sinott;

’y ¼ z;

’z ¼ x2y � Kmðy � 1Þ � Bmz � Fr sinott;
’Fr ¼ e½�ðx � xsÞ � ðy � ysÞ � ðz � zsÞ�:

ð19Þ

Fig. 23(a) shows that the system is controlled from period-1 to chaos with e ¼ 0:019; and
Fig. 23(b) shows the system is controlled from period-2 to chaos with e ¼ 0:02:
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Fig. 22. Bifurcation diagram of x for Fr between 1 and 6, ot ¼ 3; f4 ¼ 6; u ¼ f4 sinðyðt� 5ÞÞ:
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3.6. Chaos anticontrol by another style of adaptive control

One can add an adaptive control term in the system instead of control of Fr: Eq. (1) can be
rewritten as

’x ¼ �
xyz

Jr þ 1
2

y2
� Mj sinott;

’y ¼ z;

’z ¼ x2y � Kmðy � 1Þ � Bmz � Fr sinottþ f5;

ð20Þ

where the adaptive control term is f5:

’f5 ¼ eð�ðx � xsÞ � ðy � ysÞ � ðz � zsÞÞ; ð21Þ

where xs; ys; zs is the desired steady state and e indicates the stiffness of control.
We can change e to change the chaotic region. Fig. 24(a) shows the bifurcation diagram of

Eq. (1). Fig. 24(b) shows the bifurcation diagram of Eq. (20), e ¼ 0:1: In Fig. 24(a), when Fr ¼ 3:6
the system is still a period-1 system, while in Fig. 24(b) the system is already a chaotic system when
Fr > 2:6:

4. Conclusions

In this paper, we study the dynamic system of the suspended track with moving load system.
The synchronization of the master and slave system is studied. It is easy to increase the coupling
strength A of the uni-directional and mutual coupling term to synchronize the coupled systems.
These phenomena (synchronization or non-synchronization) can be proved by the Lyapunov
exponent. One of the Lyapunov exponents transverses the zero value from positive to negative at
synchronization. But in some conditions of the non-linear mutual coupling term, some error is
found. The critical values of synchronization match with the Lyapunov exponent criterion. The
phenomena of synchronization of autonomous and non-autonomous system are studied. The
synchronization is impossible. Even if coupling strength is very large, error system behavior exists.
However, the phenomena of phase locking and phase synchronization can be presented. In the
same condition the slave system is phase locking to the frequency of exterior excitation, and
master and slave system has phase synchronization. The phenomena of transient times are
studied, when master and slave system are synchronizing. If we change the initial conditions of
master and slave, the critical value of synchronization remains unchanged. Finally, the
application of synchronization in the secure communication is given. We encrypted the private
information-bearing signal and the chaotic signal of the master system from the encryption
function. We decrypted the encrypted signal from the chaotic signal of slave system and encrypted
function. It is found that if systems are not synchronized, the encrypted signal cannot be
recovered.
The various anticontrol methods for the system have been studied. In order to increase the

chaotic region, the constant torque, periodic torque and periodic impulse input are added to the
system. On the other hand, the delay feedback control can also be used. Finally, by the adaptive
control, period-1 or period-2, to chaos is successfully presented.
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